
Grim Harvest / Player 

Architecture/Design Document 

  

  

Table of Contents 

1       Introduction.. 3 

2       Design Goals.. 3 

3       System Behavior.. 3 

4       Logical View... 4 

4.1    High-Level Design (Architecture) 4 

4.2    Mid-Level Design. 5 

4.3    Detailed Class Design. 6 

5       Process View... 7 

6       Use Case View... 9 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Change History 

Version: 0.1 

Modifier: Austin Morris 

Date: 01/31/23 

Description of Change: Module Design Document started. 

 

Version: 0.2 

Modifier: Austin Morris 

Date: 02/24/23 

Description of Change: Mid Level Design & High Level Design completed. 

 

Version: 1.0 

Modifier: Austin Morris 

Date: 03/15/23 

Description of Change: UML Diagram & Process View completed. 

 

Version: 1.1 

Modifier: Austin Morris 

Date: 04/12/23 

Description of Change: Changes made to account for alpha 2 submission. 

 

 

 

 

 

 

 

 

 

 



1   Introduction 

  

This document describes the architecture and design for Grim Harvest, a game being 

developed by Jest Games. Grim Harvest is a singleplayer gothic action roguelike which 

focuses on the use of strategy with well-timed I-framed dashes, and proper ability usage to 

defeat constant waves of enemies.  

The purpose of this document is to describe the architecture and design of the Player 

Module application in a way that addresses the interests and concerns of all major 

stakeholders. For this application the major stakeholders are: 

●     Developers – they want an architecture that will minimize complexity and 

development effort. 

●     Project Manager – the project manager is responsible for assigning tasks and 

coordinating development work. He or she wants an architecture that divides the 

system into components of roughly equal size and complexity that can be 

developed simultaneously with minimal dependencies. For this to happen, the 

modules need well-defined interfaces. Also, because most individuals specialize 

in a particular skill or technology, modules should be designed around specific 

expertise. For example, all UI logic might be encapsulated in one module. 

Another might have all game logic. 

●     Maintenance Programmers – they want assurance that the system will be easy to 

evolve and maintain on into the future. 

2   Design Goals 

The design priorities for the Player system are: 

●     The design should minimize complexity and development effort. 

●     The design should allow Designers to easily have access to the properties of the 

weapon, player, and player movement. 

3   System Behavior 

The Player Module is built from the ACharacter base. The player has 3 main components for 

main gameplay functionality, health, damage, and death. These components allow the 

player to deal damage, receive damage, and die. The player should be able to use abilities 

based on the weapon currently equipped, which is handled by the Weapon Manager. The 

player should be able to dash in a directionial input.   



4   Logical View 

The logical view describes the main functional components of the system. This includes 

modules, the static relationships between modules, and their dynamic patterns of interaction. 

In this section the modules of the system are first expressed in terms of high level 

components (architecture) and progressively refined into more detailed components and 

eventually classes with specific attributes and operations. 

4.1   High-Level Design (Architecture of the Entire 

system) 

The high-level view consists of 4 major components, with 3 assisting sub components. 

 

● Player System is the main system which has a character that takes input. 

● Enemy System consists of multiple enemy types being spawned by an enemy spawn 

controller. 

● AI system is used for enemy swarming & attacking behavior. 

● Weapons System consist of 3 weapons that are handled by a weapon manager 

given to the player. Weapons can use abilities to damage enemies. 

● Abilities handles the logic for all abilities. 

● Upgrades is the upgrade system used to effect the player and abilities stats and 

variables using the GameInstance. 

● Blood Moon system is the mechanic that occurs during gameplay which effects 

enemies for a short duration. 



● The stats components consist of Health, Damage, and Death, and are given to the 

Enemy & Player class which handles all logic regarding the general combat. 

 

4.2   Mid-Level Design of the Player Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3   Detailed Class Design of the Player Module  

 



5   Process View of the Player Module 
The player is able to perform a few actions that can assist them during gameplay, including 

dashing, using abilities, and (in the future) using flasks. The Weapon module will most likely 

go into depth on the use of abilities, however there will be a small example here of how 

player input interacts with the abilities.  

 

 

Player Dash 

The dash sequence begins when the player presses the dash key (L-Shift on keyboard or L-

Shoulder on controller). There are several checks the player must pass before using a dash. 

1. The player cant be currently dashing. 2. The players velocity cannot be 0, and 3. The 

players dash cooldown timer cannot be active.  

 

Once the player passes these checks, the bDashing boolean is set to true, 

CurrentDashCount is subtracted by 1, and the StopDash() timer is called, which stops the 

players momentum based on a timer. 

 

After that, there is another check to see if the CurrentDashCount is <= 0, which means the 

player is out of dashes. A dash cooldown timer is set, and it resets the CurrentDashCount to 

the MaxDashCount.  

 

Finally, the effects are played, and the character is launched. 



Player UseAbility 

The player is able to use abilities, which change depending on the weapon currently 

selected. TriggerAbility uses a system which condenses this code into one statement. 

GetAbility gets a number for the Ability Array based on the name of the Ability used which 

you get from the Input Action Instance. The ability triggered will always be the right one 

based on input. (See Weapon Module for more information on abilities) 

Player UseFlask 
The player can use a flask using F to heal. This function uses the Blood Flask Component 

which is attached to the player. First, theres a null check, and then a simple check if the 

players health isn’t currently full. As long as it isn’t full, the flask can be used. 



6  Use Case View 

Dashing 
There are a few variables which can be edited to allow for more unique dashing.  

 
The player can currently upgrade their dash count (default 10 gold for every first upgrade) by 

1. This allows the player to dash twice before the cooldown triggering.  

 

 

 

 

 

 

 

 

 

 

 

 

 

There are several variables which can be edited in the editor, including DashSpeed, 

DashCooldown, CurrentDashCount, and MaxDashCount. Changing these will directly 

change the amount of times you can upgrade your dash, since the menu uses the 

MaxDashCount variable to determine how many upgrades you can purchase. 

 
There are also a sound effect and Niagara particle effect which can be easily changed for 

the dash. 

 

Player Stats 
There are several stats that directly affect the player, which include Movement Speed, Dash 

Count, and Gold Gain (NOTE: Increased Gold Gain is not currently implemented in this 

version) 



 
These variables are affected by the GameInstance versions, to make sure that player 

upgraded stats are kept throughout multiple menus/level loads.  

There are several other stats which can be purchased, but they directly affect abilities so 

refer to Weapon Module doc for more information. 


